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Media in which the propagation of strong disfurbances is usually studied are in many cases nonhomogeneous.

The nonhomogeneity may show up in the presence of more or less clearly defined layers with different
characteristics or in continuous variation of the properties from particle to particle; for example, with increasing
distance from the free surface the moisture content and the density of soils usually increase monotonically. In this
case a wave traveling from the free surface encounters along its path particles with different compressibility laws.
With increase of the distance the compressibility of the medium ahead of the wave front decreases. Experiments show
that for sufficiently intense reduction of the soil compressibility an increase of the pressure in a plane wave is
observed in certain segments with increasing distance from the disturbance source (for example, the location of an
explosive charge blast). For motion of the blast wave in the opposite direction we obgerve a pressure decrease which
is faster than in a homogeneous medium.

Plane wave propagation in media with continuously varying properties has been studied in [1-5] and elsewhere. In
the following we use the method of [5, 6] to solve the problem of plane one-dimensional shock wave (strong disturbance)
propagation in a nonhomogeneous plastic medium whose properties vary continuously from particle to particle and
also the problem of reflection of this wave from an obstacle. The assumption adopted that the volume of the medjum is
constant during unloading and reloading and the approximation of the uniaxial compression stress-strain o(e) diagram
(or the pressure-volume relation p(V)) by a piecewise linear function make it possible to obtain the solution in simple
analytic form. It is shown that there can be a marked pressure increase as a plane wave propagates in nonhomogeneous
media.

1. Wave propagation. We examine a medium whose p(V) compression diagram in some pressure range in each
particle can be approximated by two straight-line elements (Fig. 1). The slope of the first element and the maximum
value pg of the pressure corresponding to this element are the same for all the particles. The slope of the second
element changes monotonically with increase of the space coordinate h

p = =AWV, () =V, ()], p<p,
p—py=—4A%(h) W{H —V, (R, P > DPs
— — V—Vo _po—p .
p=—g, e.,_vu'l.,_p__ (1.1)

The subscript 0 corresponds to the initial state of the medium, pg is assumed to be zero, o is the stress
component in the wave motion direction, and p is the density of the medium.

Fig. 1

We assume unloading and reloading to take place at constant volume:

‘Z_‘:=0 a X o (1.2)

We shall use the Lagrangian mass h and time t coordinates. The basic equations of motion in these coordinates

have the form o

‘ du op _ du oV _ 1.8

-+ =0, T =0, h= (St)po(x)dx (1.3)
x(0,
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Here u(h,t) is particle velocity and x is distance in length units.

Assume that at the initial section h = 0 of the medium at t = 0 the pressure increases stepwise to p,, and then
decreases as

p=7@ (1.4)

At t =0 two shock fronts (Fig. 2) start from the initial section of the medium. The equation of the first wave
front line is h = At.

“clu

Fig. 2
The flow behind this wave front (region 1* in Fig. 2) is defined by the equations p = pg, Agu = pg.

Unloading of the medium takes place behind the second wave front (region 1 in Fig. 2). If (1.2) is satisfied the
solution of (1.3) in the unloading region is known [6]:

u=9(), p=—hy @ +$ Q) (1.5)
The particle velocity is independent of the space coordinate.

The problem reduces to determining from the boundary conditions the functions ¢(t) and y(t) and also the front
line hy(t). In the following we write these functions and also p(t) with subscript corresponding to the regior number in
the ht-plane.

The first boundary condition is that p = f(t) for h = 0. Hence we find
Yy () = f (1) (1.86)
The shock relations are satisfied at the front, which in h, t coordinates have the form
p—Pe=mV W)~V W, u—u = kO, (&) —V ()] (1.7)
Comparing (1.7) to (1.1) we find the equation of the front line:
B =Am, (b —ttc, m@©=0 (1.8)
If the relation A(h) is linear,
AR = A, +xh (1.9)
then we obtain from (1.8) the equation of the front line »h; () = 4, (et — 1),

For w > 0 the front velocity increases with increase of h; for # =0 it remains unchanged. Figure 2 corresponds
to the former case.

Let us find ¢i(t). On the front by virtue of (1.5) and (1.7)

p—rpi=A4R (u—u)
—hy (@ (@) +f() = Ry (2) l@u(t) — s} +ps (1.10)

Integrating this equation, we find ¢(t) for the initial condition

(o) =102 Ly, (1.11)
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If for h = 0 the pressure is given by the linear function

p:p,n(i—%) (1.12)

and A(h) is given in the form (1.9), then the solution in region 1 has the form

. Ppt P,
u :(p1<t)=:E(1—,_t_eT) [([}s‘—pm)t—i— T] + A
— e o t . u2ext Pt2
p= h{ A (1l — ) [p” pm<1 _THT m[@s = Pm)t+ 55 ]} (1.13)

el

If the medium is homogeneous, i.e., ®n =0, then by passage to the limit we obtain the expressions found
previously [6] for the particle velocity and pressure in region 1.

At the front hi(t) the particle velocity and pressure are defined in accordance with (1.13) by the equations

w() = — (e ) (1 4+ 22) 4 g [t 4 20T

\ (1.14)
P = pt (14 (14 5 o —p— {1+ 5]

At time t = 6, when the pressure at the initial section drops to zero, region 2 develops (Fig. 2), in which further
unloading of the medium takes place and the flow is defined by (1.5). Let us assume that at t = 6 the second wave front
hag not caught up with the first wave front. Let us find the solution in the second region.

From the condition that p = 0 for h = 0 we find

Vo) =0, u=0, (), p=—hg(t) (1.15)

From the conditions at the boundary 2-1*, which corresponds to the shock front, it follows that the front line hy(t)
is defined, as in region 1, by (1.8).

From the conditions at the boundary 2-1* we obtain
—he (9:'(1) — Pe = hy” (1) [y (1) — i (1.16)

After integrating this equation we find @y(t). We find the constant of integration from the condition that the
particle velocity be continuous at the boundary 2-1, i.e., from the condition @4(6) = ¢(6).

If the pressure at the initial section is given in the form (1.12) and A(h) is given in the form (1.9), after
integrating (1.16) we obtain the solution in region 2 in the form

%

0
U = @y (1) :us‘}‘m(ﬂt—ﬁzﬂ“)

p=—1 (1 — exty2 [Ps (1 — ety 1 %<pst . prge )ey.t] (1.17)

It follows from (1.17) that at the wave front

0
u,::us_..%—[p_shl<1 _"%>___{JT£_.1
9
p=pt [Pl Bn(iy )|t A (1.18)

and the solution is completed.

2. Wave interaction with an obstacle. In certain media (soils, for example), the pressure pg usually does not
exceed a fraction of the atmospheric pressure. We see from (1.13) that the presence of a weak wave with pressure
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Pg ¥ Py has no significant effect on the parameters of the strong disturbance traveling behind the wave. At the same
time, in the case of interaction with an obstacle, account for the weak wave leads to the formation of a large number of
small regions in which the definition of the flow is time consuming. Therefore, we solve this part of the problem using
the approximation of the compression diagram by a single element (i. e., we assume pg = 0).

=t |
P 5\' [
P, 5 : 4
T
!
z2
a4
| B
hm h(i)
Fig. 3

The solution in region 1 (Fig. 3) was obtained above. Assume that further change of the acoustic resistance
terminates at the section AV, corresponding to this region, i.e., A = A* for &2 > k. Then region 2 develops. Let us
find the solution in this region. The shock front line, which we denote by k2 (¢), is straight:

Ro(t) — BD = A* (1 — 1) (2.1)
If the acoustic resistance changes in region 1 in accordance with (1.9), then
A* = A, £ upn (2.2)

Unloading of the medium takes place in region 2 and we seek the solution in the form (1.5). From the condition at
the section h = 0 we find that $(t) = f(t). The conditions at the shock front are: p = A*2 (V, — V), u = 4% (V, — V).
Hence we find

ho'gs = — hypy + (1), P = %;Sf(t) dt, %(t(l)) =@y (t(l)) (2.3)

Let us examine the case in which the pressure at the initial section follows (1.12) and the acoustic resistance
follows (1.9). Then we find from (2.3) the particle velocity and pressure in the form

)
@ =—1;[th,,1(1 ———) hy Pt | ——)] . (2.4)

p= “hz%.“{" P <1 "T)

1
U =@y = hi (t) pm

\gh

The pressure at the wave front is

_ A1+uh“'>< by — BV <1>>< 0 =k ) (2.5)
D= Pn 35 T (20—t Ay %hD

Let a stationary obstacle be located at the section A®.

The two regions 3 and 4 (Fig. 3) are formed upon wave reflection from the obstacle. Unloading and loading of the
medium take place in region 3. For k > k) loading takes place up to a value of the pressure which is different for the
different particles but is equal to the pressure reached at the incident wave front hy(t). In this case 3V/8t = 0 and the
solution has the form (1.5).

It follows from the condition at section h = 0 that P3(t) = 7(t). At the boundary hs(t) with region 4 we have in
accordance with (2.5)

Po(he) = — o (8) @s (1) + () = g Toye (s (6) — B+ 4*¢)
w B (1) — R
x(ze—zl ~—7——> (2.6)
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Unloading of the medium takes place in region 4 behind the pressure jump at the boundary ks (¢). It follows from
the condition that the obstacle be stationary that in region 4 the particle velocity equals zero and the pressure depends
only on the time,

=10, Pa =1, () (2.7)
Thus, to define the flow in regions 3 and 4 we must find @; (8), %5 (2), V¥4 (2).

The conditions at the boundary ks (§) yield

Py — Py = hy (D9s(D), s (&) = ks ()Vs — V) (2.8)
Assuming that p; = —A* (V3 — V), pa=4* (V. — V), we then find the front line

h3(t) - h(z) A% (t - Z(2)), t(-z) — t(l) 4 h(Z);h(l) (2.9)
It follows from (2.8), (2.8), (2.7) that
Yy + ho@y — | = Iy, be = Py -+ A¥p, (2.10)
d
b5 =P (h) + A*9s,  po=— LA
- v ps dps m R A* (t—z(‘))
%—A*(_'E_Ti}‘z;—rhs T( >
From (2.10) and (2.9) we obtain
. 2p 2
b = —5" <1 - 2h<2>—h<1>—A'(t—t<l>)> (2.11)
Integrating and finding the arbitrary constant from the condition
Py (B) = py (h®) + A%, (1) (2.12)
we determine the pressure in region 4:
2p (2)
Ps = Py = —eﬂ{t — +—hAT In [2 - (r — t(”)]}
. 206(2) _ (122
+ P (K)o A% (1Y), (1) = pp (2.13)
@y RO - 4710 ) B2 gD __ 9 4%, (1)
(W) = py, [(1 - 2 (1 - 5A%G ) (2.14)
We find the particle velocity in region 3 from (2.6):
u:qys(t):gﬂ):(l:;(ﬂdt Lo (2.15)

We find the arbitrary constant from the condition that the velocity be continuous for ¢ =:®,

In accordance with (2.6) and (2.9) we substitute the expressions for p(h;) and hg(t) into (2.15). We replace
integration with respect to t by integration with respect to hs:

at = —

dhs e, KO—r® gy 2p® g,
o =t =t —=

Then the particle velocity in region 3 is

P | 3 (ks — ) 2h(2) hg
P = A*‘{ 2470 a0 05E
) t p1? ) e 1 1
- [h (1 ) ) s — A (1 - B )\ T } @2 (1) (2.16)

563



Thus the flow in regions 2, 3, and 4 has been determined.

At the time #® the wave front reflected from the obstacle reaches the section AV . Then the new regions 5 and 6
appear.

Unloading of the medium and reloading to the value reached at the incident wave front take place in region 5. The
difference from region 3 is that the initial loading laws are different for all the particles. As a result of this the
boundary 5-6 is curved. We denote it by hy(t). We find from the condition at section h = 0 and (1.5) that

v =70, @y =LO5BE ) — by (k) (2.17)

The front line hy(t) is found from the conditions

. . B'a (D —
Pe— D5 = H4@s, 96=0, —‘(PszhA(Vs—‘Vs):‘(—:h(g_;_W%g)' (2.18)

Hence

Ko=— Ayt ), ()= S[(1 4 Z) e 1]
1
. (2.19)
(2) (1)
O {0 0 o WY —R
+ + A+ wh()
We substitute t determined from (2.19) into (2.17), and we replace integration with respect to t by integration
with respect to hy:

dh, 1 Ay - nh
dt = %% — 1 1 4
C Ay nhy t ® In Ay + kD

Then

- 1 1@ 1 o Ap 4k
%“)“*ng{(,ql+x;14)h4<i“ e T A1+xh‘>
1 A I3 A ha

[ln Sk S Y 11“"]}(1]@_,—}—0

- Kh,;“" Al

The constant is found from the condition that the particle velocity be continuous at the boundary of regions 3
and 5.

In region 6 the particle velocity is zero and the pressure is found from (2.18) and (2.19):
Ps = ps (hy) — h4‘P.5 = Ps (hs) + (41 4 %ha)ps

Thus the solution in regions 5 and 6 has been found. However, the integral defining the function @5(t) cannot be
expressed in elementary functions, and therefore the determination of the flow in these regions must be carried out
numerically.

3. Discussion of computational results. The physical essence of the process of wave propagation and interaction
in nonhomogeneous media can be explained on the basis of the expressions obtained above. Let us examine the case in
which the pressure at the initial section of the soil corresponds to (1.12) and the acoustic resistance variation
corresponds to (1.9). Let us first evaluate the possible values of ®. For example, we assume that in the layer adjacent
to the initial section p = 1.6 - 10° kg/m®, and the plastic wave velocity C = 80 m/sec. At the distance 20 m we have p
=2-10° kg/om3 and ¢ = 420 m/sec. Taking a linear variation of density with distance, we find that w = 20 sec”!. The
increase of ¢ and p in individual segments in other dense media may take place more intensely.

In Fig. 4 curves 1, 2, and 3 correspond to the maximum pressure at the incident and reflected wave fronts. It is
assumed that the properties of the medium do not change with depth beginning at the section 2. Then A"/ 4, = 0.0858

sec. At the section #® there is a stationary obstacle made from incompressible material r®/ 4; = 0.154 sec.

Curve 1 corresponds to the pressure for 6 = 0.1 sec, ® = 20 sec‘l, curve 2 is for 6 = 1 sec, ® = 0 {homogeneous
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medium), and curve 3 is for 6 = 1 sec, ® =20 sec !, In the nonhomogeneous media # = 0.05 sec,

@ = 0.075 sec, and in
the homogeneous medium # = 0.0858 see, ) = 0,154 sec.
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We see from the curves that with increasing distance from the initial section for » > 0 increase of the pressure
may take place. With reduction of 6 the magnitude of the increase diminishes. Upon transition into the region n = 0 the
pressure at the front begins to decrease with distance. With approach to the obstacle the pressure for 6 = 1 sec still
has not decreased to p,,, while for 6 = 0.1 sec it decreases to 0.82 p .

Upon reflection from the obstacle the pressure increases stepwise by a factor of two. The pressure at the

reflected wave front decreases with approach to the initial section. For a smaller value of 6 the decrease is more
intense.

Curve 1' corresponds to the particle velocity for 6 = 0.1 sec, » =20 sec™!, and curve 3'is for 6 =1 sec, ® =20
sec”’. In the homogeneous medium the curves of p/pm and A/ pn coincide.

In all cases the particle velocity decreases with distance. In the nonhomogeneous medium the particle velocity
decreases more rapidly with distance than in a homogeneous medium. With increase of 6 the rate of velocity decrease
diminishes. The particle velocity in the reflected wave equals zero.
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Fig. 6

Figures 5, 6, and 7 show curves of the relation p(t)/pm for certain sections of the medium. These figures
correspond, respectively, to the cases 6 = 0.1 sec, n =20 sec'i; 6=1sec, w=0: 6=1sec, n =20 sec .. Inall the
figures curve 1 is the pressure for h =0, curve 2 is for » =", and curve 3 is for »= a®.
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At all sections behind the incident wave front there is a decrease of the pressure, accompanied by unloading of
the medium. This decrease also continues after t =t However, the zone of pressure decrease entering
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region 3 (i.e., for ¢t>t® ), at all points other than those lying close to the section h =0, is rapidly replaced by a zone
of pressure increase, which takes place with 8V/08t = 0. Behind the pressure jump the pressure on the reflected wave
front h3(t) again decreases.
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Fig. 7

Thus, in nonhomogeneous media with » > 0 there is an increase of the pressure as the wave propagates. With
increase of w the intensity of the pressure rise increases. The maximum wave load acting on an obstacle may exceed
significantly the load acting in a homogeneous medium for the same pressure variation law on the free surface. The
particle velocity is less in nonhomogeneous media than in homogeneous media.

The solution was carried out without account for the viscous properties of the medium, i.e., the dependence of
the o(e) diagram on the deformation rate. Account for this factor leads to increase of the energy losses in the wave and
consequently to attenuation of the wave with distance [5].
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